1 Fig. 9 shows the curve with equation $y^{3}=\frac{x^{3}}{2 x-1}$. It has an asymptote $x=a$ and turning point P .

Fig. 9
(i) Write down the value of a.
(ii) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4 x^{3}-3 x^{2}}{3 y^{2}(2 x-1)^{2}}$.

Hence find the coordinates of the turning point P , giving the y-coordinate to 3 significant figures.
(iii) Show that the substitution $u=2 x-1$ transforms $\int \frac{x}{\sqrt[3]{2 x-1}} \mathrm{~d} x$ to $\frac{1}{4} \int\left(u^{\frac{2}{3}}+u^{-\frac{1}{3}}\right) \mathrm{d} u$.

Hence find the exact area of the region enclosed by the curve $y^{3}=\frac{x^{3}}{2 x-1}$, the x-axis and the lines $x=1$ and $x=4.5$.

2 Fig. 8 shows the curve $y=\frac{x}{\sqrt{x-2}}$, together with the lines $y=x$ and $x=11$. The curve meets these lines at P and Q respectively. R is the point (11, 11).

Fig. 8
(i) Verify that the x-coordinate of P is 3 .
(ii) Show that, for the curve, $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x-4}{2(x-2)^{\frac{3}{2}}}$.

Hence find the gradient of the curve at P . Use the result to show that the curve is not symmetrical about $y=x$.
(iii) Using the substitution $u=x-2$, show that $\int_{3}^{11} \frac{x}{\sqrt{x-2}} \mathrm{~d} x=25 \frac{1}{3}$.

Hence find the area of the region PQR bounded by the curve and the lines $y=x$ and $x=11$.

3 Fig. 9 shows the curve $y=\mathrm{f}(x)$, which has a y-intercept at $\mathrm{P}(0,3)$, a minimum point at $\mathrm{Q}(1,2)$, and an asymptote $x=-1$.

Fig. 9
(i) Find the coordinates of the images of the points P and Q when the curve $y=\mathrm{f}(x)$ is transformed to
(A) $y=2 f(x)$,
(B) $y=\mathrm{f}(x+1)+2$.

You are now given that $\mathrm{f}(x)=\frac{x^{2}+3}{x+1}, x \neq-1$.
(ii) Find $\mathrm{f}^{\prime}(x)$, and hence find the coordinates of the other turning point on the curve $y=\mathrm{f}(x)$.
(iii) Show that $\mathrm{f}(x-1)=x-2+\frac{4}{x}$.
(iv) Find $\int_{a}^{b}\left(x-2+\frac{4}{x}\right) \mathrm{d} x$ in terms of a and b.

Hence, by choosing suitable values for a and b, find the exact area enclosed by the curve $y=\mathrm{f}(x)$, the x-axis, the y-axis and the line $x=1$.
(i) Differentiate $\frac{\ln x}{x^{2}}$, simplifying your answer.
(ii) Using integration by parts, show that $\int \frac{\ln x}{x^{2}} \mathrm{~d} x=-\frac{1}{x}(1+\ln x)+c$.

